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Abstract

We revisit the bias in the estimation of production functions with firm-level data due to the

lack of physical quantities on output and inputs. We show that constructing firm-specific prices

from available data on firm-specific price changes, and using them to deflate revenues and ex-

penditures, introduces a measurement error into the empirical production function. This error

reflects the unobserved base year prices used in the construction of the firm-specific prices. The

usual practice of ignoring them generates an omitted variable bias (OVB). Monte Carlo simula-

tions suggest that this bias can be significant. Because of the OVB, the estimates are sensitive to

the choice of base year. The OVB disappears in our simulations when firm-specific fixed effects

are incorporated into the estimation of the production function.
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participants at the IIO Conference (Boston, 2022) and EARIE Conference (Vienna, 2022), for helpful comments and sugges-

tions. An earlier version of this paper entitled ”Firm-level price information and the production function estimation” is

avaliable at RGEA Working Paper 6, 2013. All errors are our responsibility.
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1 Introduction

The presence of unobservables in the estimation of production functions raises a set of empirical

challenges that have no straightforward solution (Ackerberg et al., 2007;Pakes, 2021; De Loecker and

Syverson, 2021). Broadly speaking, these unobservables can be classified into structural variables,

such as unobserved productivity, or measurement problems, such as unobserved firm-level quanti-

ties.

Most of the literature focused on addressing the problem of unobserved productivity. As first

shown by Marschak and Andrews (1944), when managers make input decisions after observing their

firm’s productivity, optimal behavior implies a correlation between unobserved (to the researcher)

productivity and input choices. This makes the input regressors inherently endogenous in the esti-

mation of production functions.1

Measurement problems arise because most firm-level datasets report firm revenues and materi-

als expenditures rather than physical quantities. When revenues and materials expenditures need

to be deflated, and firm-specific prices are not observed, an additional source of endogeneity may

arise. Klette and Griliches (1996) showed that using aggregate price indices to deflate these nominal

variables introduces an omitted variable bias.

In some cases, relying on additional structural assumptions may solve this omitted variable prob-

lem.2 In other cases, however, identification of the production function may require observing the

firm’s output and input price levels, e.g., when price levels are state variables (e.g., Doraszelski and

Jaumandreu, 2013, among others).

Datasets reporting price levels are rare, but there is an increasing number of datasets reporting

firm-specific price changes.3 Based on these data, the unobserved firm price levels can be recovered by

1Different approaches have been proposed to address this endogeneity problem: proxy variable methods initiated by
Olley and pakes (1996) (see also Levinsohn and Petrin, 2003; Ackerberg et al., 2015), dynamic panel data models (Blundell
and Bond, 2000), and methods exploiting the structural restrictions imposed by profit maximization (e.g, Doraszelski and
Jaumandreu, 2013; Grieco et al., 2016; Gandhi et al., 2020.

2For example, Klette and Griliches (1996) assume specific demand systems, while De Loecker et al. (2016, 2021) model
the unobserved input price as a function of observables.

3For example, the Swedish Industry Statistics Survey (Carlsson et al., 2021), the German Manufacturing Sector Micro
dataset (Mertens, 2020), the manufacturing firm-level dataset provided by Statistics Denmark (Smeets and Warzynski,
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a recursion on the price changes plus an unknown initial condition, the unobserved price level in the

base year. This unknown component is essentially a measurement error in the true, but unobserved,

price level when it is measured by the price recovered from price change data.

This measurement error – the unobserved price level in the base year – is usually ignored when

recovering the firm’s specific price level from observed price changes. Specifically, it is standard

practice to set the base year (log) price level to zero for all firms in the sample and use the resulting

firm-level prices to deflate revenues and expenditures (e.g., Eslava et al., 2004 or Koch et al., 2021,

among others).

The main goal of this paper is to show that ignoring the unobserved price in the base year, by nor-

malizing it to zero, generates an omitted variable which is likely to bias the estimators of the production

function parameters. We show that the base year price is a firm-specific fixed effect which is likely

to be correlated with input demands and should therefore be taken into account in the estimation

procedure.

Using Monte Carlo simulations, we show that the normalization of the unobserved base price

years can generate biases of up to 70 percent in the estimated parameters. These biases do indeed

disappear when the measurement error is treated as a firm-specific fixed effect in the empirical pro-

duction function.4

Another effect of ignoring the base year prices is that the estimates change when the base year

changes. This is worrisome because the choice of base year in constructing the firm-specific prices

is arbitrary and at the discretion of the researcher. To be clear, using the same data but choosing a

different base year (e.g., the year at the middle of the sample instead of the initial year) can generate

different estimated parameters. We illustrate this problem by using a synthetic dataset of the Spanish

Encuesta sobre Estrategias Empresariales (ESEE). The average change (in absolute value) across the

ten industrial sectors in the Spanish data ranges between 11 and 33 percent. In some sectors, changing

the base year changes the estimates by 97 percent. When using firm-specific fixed effects to capture

2013), the Spanish ESEE manufacturing database (Doraszelski and Jaumandreu, 2013), among others.
4In our Monte Carlo simulations we use a log-linear model based on a Cobb-Douglas production function which implies

that the measurement error is additively separable. If the production function is non-linear incorporating fixed effects into
the estimation procedure may be more challenging, but this is beyond the main goal of this paper.
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the unobserved base year the estimated parameters are invariant to the choice of base year.

Finally, we point out that, even when the production function is estimated consistently, residual

estimates of firm-specific productivity levels are biased by the presence of base year prices. Although

firm-specific productivity growth can still be recovered, aggregate productivity is still biased and this

bias is likely to be negative. We show, however, that estimating productivity from the second stage

of proxy estimation methods delivers the correct firm-specific productivity levels.

The paper is organized as follows. Section 2 presents the problem of the unobserved base year

prices and the bias resulting from their normalization. Section 3 presents the results of Monte Carlo

simulations that quantify the magnitude of this bias. Section 4 tackles the issue of the change of base

year, while Section 5 points out some implications of the lack of information on base year prices on

the estimation of productivity. Conclusions close the paper.

2 The bias from normalizing the unobserved price level in the base year

In this section we derive the empirical production function when physical quantities are measured

by deflated revenues and materials expenditures. We show that when firm-specific price levels are

recovered form data on price changes, the unknown base year prices appear as additional unobserv-

ables in the production function equation.

2.1 The empirical production function

The single-product production function for firm j is Qjt = F(Kjt, Ljt, Mjt)eω jt+ϵjt , where ω jt is produc-

tivity, Kjt, Ljt, Mjt are measures of capital, labor and materials, and ϵjt is an I.I.D. zero mean shock to

production which is unknown to the firm when making its input decisions.5

5We focus on a single-product production function. This is the usual case because most datasets do not report product-
specific information. Equation (1) may be viewed as a single-product production function in a multi-product firm when
the decision to add additional products is independent of the unobserved productivity and/or the firm’s use of in-
puts(De Loecker et al., 2016).
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In logarithms, denoted by lower-case letters, the production function can be written as

qjt = f (k jt, ljt, mjt) + ω jt + ϵjt (1)

To estimate equation (1) we need to address two problems arising from the fact that researchers do

not observe all the information used by firms when making their input decisions. The first problem

is the non-observability of the firm’s productivity, ω jt, while the second problem is the (possible)

non-observability of physical quantities of output and inputs.

The unobserved productivity generates an endogeneity problem because it is correlated with

input choices. The literature paid special attention to this problem and developed several approaches

to deal with this issue (e.g., see references in Syverson, 2011; Ackerberg et al., 2015; De Loecker and

Syverson, 2021; Pakes, 2021).

On the other hand, the non-observability of physical quantities, and its measurement by deflated

revenues and input expenditures, received much less attention in the literature. It was not until

Klette and Griliches (1996) showed that the standard practice of using industry-wide price indexes

to deflate firm-level revenues generates an omitted variable (price) bias that this issue came to the

attention of empirical researchers.

To overcome this price bias researchers make additional structural assumptions, such as specific

demand functions or an input price control function (e.g., Klette and Griliches, 1996; DeLoecker et

al. 2016, 2020). In other instances, researchers use alternative sources of price information, such as

custom data, to construct proxies for the unobserved firm-specific prices (Morlacco, 2020).

Recently, the increasing availability of firm-level datasets reporting information on firms’ year-to-

year changes in their output and input prices allows researchers to overcome the lack of full informa-

tion on prices. These reported price changes are used to recover firm-specific price levels which are

then used to deflate nominal quantities. In this Section we analyze this case in detail and spell-out

the often implicit assumptions necessary for its implementation.

For clarity of exposition we start by addressing the problem associated with the lack of data on
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physical output qjt – equivalently, unobserved firm-specific output price levels – and later introduce

the additional problem of not observing materials quantity mjt.6

Most firm-level datasets report revenues Rjt = QjtPjt instead of physical output Qjt. When we

use revenue to measure output, the production function equation becomes,

rjt = qjt + pjt = f (k jt, ljt, mjt) + ω jt + ϵjt + pjt (2)

where rjt are log revenues and pjt is log output price.

In equation (2), pjt is unobserved and its omission generates an output price bias when it is corre-

lated with input choices. The standard approach to address this issue has been to measure output as

deflated revenues, i.e., rjt − pd
jt, where pd

jt is a price deflator (in logs). When using an industry-wide

price deflator, for example, pd
jt = pd

t for all firms in the industry, the estimated production function

becomes

rjt − pd
t = f (k jt, ljt, mjt) + ω jt + ϵjt +

(
pjt − pd

t

)
(3)

As pointed out by Klette and Griliches (1996), this approach introduces an additional unobserv-

able given by the gap between the firm’s price and the industry price,
(

pjt − pd
t
)
. This price gap is

likely to be correlated with input demands when prices vary across firms within an industry. Esti-

mators that ignore this unobseved heterogeneity suffer, therefore, from an omitted variable (price)

bias.

As mentioned above, one solution to the problem of not observing pjt in (2) is to construct firm-

specific prices from reported price changes.7 Letting ∆Pjt =
Pjt−Pjt−1

Pjt−1
, the unobserved firm price Pjt is

recovered by using a recursive formula on these price changes and a price level in the base year Pjb,

where year b < t is the base year,

6Throughout the paper we assume that the quantity of labor is observed because most datasets report the number of
employees or working-hours.

7Examples of papers using price changes to construct a firm-specific price index are Eslava et al. (2004); Mairesse and
Jaumandreu (2005); Smeets and Warzynski (2013); Dolado et al. (2016); Jaumandreu and Lin (2018); Mertens (2020); Carls-
son et al. (2021); Chen and Steinwender (2021), among others.
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Pjt = Pjt−1(1 + ∆Pjt) = Pjb

t

∏
s=b+1

(1 + ∆Pjs) = Pjb

t

∏
s=b+1

Pjs

Pjs−1

and in logs,

pjt =


pjb + ∑t

s=b+1 ∆pjs if t > b

pjb if t = b

(4)

where ∆pjs = ln
(

Pjs
Pjs−1

)
= pjs − pjs−1.8

Using equation (4) we can rewrite revenues as rjt = qjt + pjb +∑t
s=b+1 ∆pjs, for t > b, and since pjb

is unobserved because only price changes are observed, the empirical production function becomes

r∗jt ≡ rjt −
t

∑
s=b+1

∆pjs = qjt + pjb = f (k jt, ljt, mjt) + ω jt + ϵjt + pjb (5)

for t > b, while for year t = b we have r∗jb = rjb = qjb + pjb.

Note that in equation (5) output is measured by partially deflated revenue r∗jt because the base year

price, pjb, is unobserved by the researcher. Put differently, the base year price can be viewed as a

measurement error when physical output is measured by partially deflated revenues, r∗jt = qjt + pjb.9

2.2 Normalization of the base year output price level

Notice the similarity between equations (3) and (5): both equations include an unobserved firm-

specific price. In equation (3) this term is the firm’s price relative to the industry-wide price deflator,

pjt − pd
t , while in equation (5) it is the firm price level in the base year, pjb. In both cases, the param-

eter estimators will be biased if they ignore the correlation between these unobservables and input

demands.

8The base year is arbitrarily chosen by the researcher. For clarity of exposition we focus on the natural case where the
base year is the first year the firm appears in the sample, b ≤ t. When this is not the case, the formula in equation (4)
changes in an appropriate way.

9The “measurement error” term pjb is also referred interchangeably as an “omitted variable”.
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These unobservables, however, are treated differently in the literature. The usual approach to

overcome the bias due to the unobservables in equation (3) has been to introduce structural assump-

tions into the estimation. In contrast, the unobserved base year price in equation (5) has been usually

ignored by its de-facto normalization to zero. Indeed, the usual solution to the presence of the unob-

served base year price level has been to set its value to zero, pjb = 0 for all j.

This normalization of the base year price seems restrictive for several reasons. First, it implies

that firms have the same exact price level in the common base year and different prices in other

years. This implied assumption seems overly restrictive; even more so if we take into account that

the base year is chosen by the researcher.

Second, it conflates unobserved firm-specific price levels with observed price changes. Let the

price levels set by the firm be
(

Pj1, Pj2..., PjT
)
= (Pj1, (1 + ∆Pj2)Pj1, ..., ∏T

s=2(1 + ∆Pjs)Pj1). This equal-

ity no longer holds when the researcher chooses an ad-hoc value for the unobserved price level in the

first year (the base year) of the sample. That is, setting Pj1 = 1 (as implied by the zero normalization of

the log price) implies that
(

Pj1, Pj2..., PjT
)

is no longer necessarily equal to
(

1, (1 + ∆Pj2), ..., ∏T
s=2(1 + ∆Pjs)

)
.

Thus, the normalized prices does not necessarily generate the correct set of firm-level prices.10

Finally, for the seemingly trivial normalization to work it requires a strong behavioral assump-

tion: the lack of correlation between output price in the base year, pjb, and input demands in any year

t ≥ b. Otherwise, there is an omitted variable bias.11

10Unfortunately, this has lead to some confusion on whether having access to data on firm-level price changes is equiva-
lent to observing the firm’s levels of prices. Many papers that use price change data do indeed construct firm-specific price
deflators and use them to deflate nominal quantities (instead of using industry-wide price deflators), but they do not seem
to be aware of the possible omitted variable bias generated by the normalization of the base year prices.

11Doraszelski and Jaumandreu (2013, hereafter DJ) also normalize the base year prices to zero but follow an alter-
native two-step approach to derive price levels from data on price changes only (developed in Jaumandreu and Lin,

2018). First, they compute the price level for each period t using the same recursion formula, Pjt = Pjt−1

(
1 + ∆Pjt

)
,

with ∆Pjt =
Pjt−Pjt−1

Pjt−1
being observed, while normalizing the base year price to 1. That is, this first step price is

P∗
jt ≡ ∏t

s=b+1

(
1 + ∆Pjs

)
=

Pjt
Pjb

reflecting the accumulated price changes between the base year and period t. In a

second step they normalize P∗
jt by the average of its values for each firm, P∗

j ≡ 1
T ∑T

t=1 P∗
jt =

Pj
Pjb

, where Pj is the un-

observed price average, Pj = 1
T ∑T

t=1 Pjt. The DJ deflator is then PDJ
jt =

P∗
jt

P∗
j
=

Pjt

Pj
, so that the (log) true price is mea-

sured with an error, log
(

PDJ
jt

)
= pjt − log

(
Pj

)
. Deflating log revenues by the log of this normalized price gives

r∗DJ
jt = qjt + pjt − log

(
PDJ

jt

)
= qjt + log

(
Pj

)
, which corresponds to the RHS of equation (5) with the unobserved (log)
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2.3 Unobserved input base year price level

An analogous problem appears when the firm’s input price level is recovered from input price

changes. To be specific, let the log of materials expenditure be ejt = mjt + pMjt, where pMjt is

the unobserved log materials price level. Then, partially deflated materials expenditure is m∗
jt =

ejt − ∑t
s=b+1 ∆pMjs = mjt + pMjb where pMjb is the unobserved base year materials price level (the

measurement error).

When the physical quantity of materials is measured by partially deflated materials expenditures

the empirical production function becomes

r∗jt = f (k jt, ljt, m∗
jt − pMjb) + ω jt + ϵjt + pjb. (6)

since mjt = m∗
jt − pMjb.

Clearly, not observing the input base year price level introduces an additional unobservable, pMjb,

into the empirical production function. The precise way pMjb enters equation (6) depends on the

functional form of f (·). For example, when the production function is Cobb-Douglas, (6) becomes

r∗jt = αLljt + αMm∗
jt + αKk jt + ω jt + pjb − αM pMjb + ϵjt so that pMjb also enters additively. The usual

solution has been to ignore this term by normalizing its value to zero, i.e., setting pMjb = 0 for all j.

Summary

The empirical production function obtained when revenues and materials expenditures are deflated

using prices recovered from data on price changes includes additional unobservables reflecting base

year price levels. Standard practice, however, is to ignore these unobservables by setting them to

zero. For these arbitrary normalizations to work, strong behavioral assumptions are needed.

It is sensible to posit that a firm’s demand for inputs depends, among other things, on the input

prices it faces. These prices may vary across firms because of differences in productivity, location

and/or firm-specific random shocks (Grieco et al., 2016; Ackerberg et al., 2015). In this case, pMjb is

average price taking the place of the base year price. Thus, the problems associated with estimating (5) are also present in
the DJ approach.
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necessarily correlated with partially deflated materials, one of the regressors, because m∗
jt = mjt +

pMjb. It may also be correlated with labor demand, ljt. The output price in the base year, pjb, may

also be correlated with input demands in other years. The precise type of correlation depends on

the model of firm behavior.12 If the variation across firms in base year prices is ignored, either by

assuming they are zero (or any other constant) or by actually treating them as an uncorrelated error

components, this is likely to introduce a price bias in the spirit of Klette and Griliches (1996).

In the next section we use Monte Carlo simulations to quantify the impact of ignoring the unob-

served base year price levels on estimators of the production function parameters.

3 Monte Carlo simulation results

We first describe the data generating process used in the simulations. We then derive the empiri-

cal production function to be estimated with the simulated data. The precise specification depends

on the type of price data available to researchers. Finally, we present results from two simulation

designs: one where productivity is observed and the other one where it is not.

3.1 Data generation

The data generating process (DGP) follows the basic DGP developed by Grieco et al. (2016; hereafter

GLZ) but applied to a Cobb-Douglas production function and with some minor modifications.

The Cobb Douglas production function is,

Qjt = eω jt KαK
jt MαM

jt LαL
jt

12For example, if input demand depends directly on output price and the latter is serially correlated, pjb will be correlated
with m∗

jt. Another example is when output price is itself endogenous and depends on productivity. Because productivity
is usually viewed as serially correlated this creates a link between pjb, ω jb and ω jt and, if input demands depend on
productivity as well, pjb will likely be correlated with input demand in other years. In Appendix A we use a simple model
to formalize some of these intuitive arguments.
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The exogenous productivity process is a first-order autoregressive process

ω jt = ρ0 + ρ1ω jt−1 + ϵω
jt .

The firm’s capital stock is Kjt+1 = Kjt + Ijt and evolves over time based on the investment rule

log(Iit) = ξω jt + (1 − ξ)log(Kjt) which is compatible with the Olley and pakes (1996) assumptions

(see Grieco et al., 2016).

The idiosyncratic labor and material (log) input prices are generated by

pLjt = λL0 + λL1 pLjt−1 + ϵL
jt+1

pMjt = λM0 + λM1 pMjt−1 + ϵM
jt+1

where
(

ϵL
jt, ϵM

jt , ϵω
jt

)′
∼ N(0, Σ), where Σ is a 3 × 3 positive matrix.

Departing from the specification used by GLZ we explicitly allow for serial correlation in input

prices and for correlations between the shocks to input prices and to productivity, following standard

practice in the literature (e.g., Ackerberg et al., 2015; Doraszelski and Jaumandreu, 2013). In the

simulation design we also let the optimal choice of labor be subject to an optimization error so that

observed labor is the optimal labor choice plus a white noise error term. This adjustment addresses

the collinearity problem pointed out by Ackerberg et al. (2015). The underlying parameters used to

generate these datasets and a full description of the DGP are in Appendix B.

At the beginning of each period t the firm observes capital Kjt, productivity ω jt and firm-specific

input prices. As in GLZ, firms are price takers in the input markets but input prices may be different

across firms and over time because of productivity or other reasons. It then optimally chooses labor

and materials to maximize static profits in each period,

Max
Ljt,Mjt

PjtQjt − PLjt Ljt − PMjt Mjt
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with demand given by

Pjt = Pt

(
Qjt

Qt

) 1
µ

where Qt and Pt are industry-level output quantity and price in period t, µ < −1.

In this environment, input demands at time t are functions of productivity and input prices at

time t, the three exogenous drivers of the model.

We simulate a sequence of productivity, ω jt, input prices, PLjt and PMjt and capital stock, Kjt,

for each of 500 firms over 50 periods. With these variables we derive the optimal choice of labor

and material inputs, investment, output quantity and output price level. That is, for each firm j and

period t we generate data on {ω jt, Kjt, PLjt, PMjt, Ljt, Mjt, Ijt, Qjt, Pjt}T
t=1. We repeat this process 1,000

times so that we have 1,000 replications of these data. To minimize the impact of initial conditions,

we keep the last T < 50 observations for each firm so the length of the simulated panel is T periods

(the baseline T is 15 periods).

3.2 The empirical production function

The estimated production function depends on the type of price data available to the researcher.

We first consider the ideal situation where (log) price levels {pLjt, pMjt, pjt} are observed by the re-

searcher. Equivalently, the researcher observes physical quantities {qjt, k jt, ljt, mjt}. In this ideal case

the empirical production function is

qjt = αLljt + αMmjt + αKk jt + ω jt + ϵjt. (7)

The second, empirically relevant, case arises when researchers observe only output and materials

price changes. In this case, the data used in the simulations are {rjt, k jt, ljt, ejt, pLjt, ∆pMjt, ∆pjt}. In

this case, the empirical production function is

r∗jt = αLljt + αMm∗
jt + αKk jt + ω jt + pjb − αM pMjb + ϵjt. (8)

with partially deflated revenues and materials.13

13The base year is the first period the firm appears in the sample. Estimation starts in year t = 1 and uses T < 50 years
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In the simulations results we compare three estimation results. First, those obtained when quan-

tities are observed, equation (7). Second, results obtained when the unobserved base year price levels

are normalized to zero, equation (8) with pjb = pMjb = 0. The third type of results are also obtained

from equation (8) when normalization is not imposed, i.e., treating the unobservable base year price

levels as firm-specific fixed effects.

3.3 Simulation results

It is well known that a main difficulty in estimating production functions is dealing with the fact

that the researcher does not observes the firm’s productivity. Thus, in order to abstract from esti-

mation issues related to the endogeneity of productivity, we will first consider the case where firm

productivity is observed by the researcher. In this thought experiment we can estimate the production

function by OLS and, hence, focus directly on the impact of normalizing the base year prices.

We then consider the case where productivity is not observed. In this case we use the Olley

and Pakes (1996) proxy method when the base year price levels are normalized to zero. When this

normalization is not imposed, and the unobserved base year price levels are treated as firm-specific

fixed effects, we use the partially linear series estimator proposed by Baltagi and Li (2002).14

The estimation methods used in the paper fit the DGP chosen (and vice-versa) and are meant to

illustrate the main goal of the paper: drawing attention to the bias introduced by the normalization

of unobserved base year prices. The literature offers a variety of estimation methods to estimate

production function under different sets of assumptions. However, the measurement error due to

the normalization of unobserved base year prices is unrelated to the estimation method.

3.3.1 A thought experiment: observed productivity

In this Section we consider the hypothetical situation in which the researcher observes firm produc-

tivity. This assumption allows us to focus on the omitted price bias by eliminating the endogeneity

of data for each firm because we observe price changes for the first year in the sample.
14We use the estimator proposed by Baltagi and Li (2002) because of its computational simplicity compared, for example,

to that of Su and Ullah (2006), which was used in the 2013 version of the paper.
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problem due to unobserved productivity. That is, the empirical production function can simply be

estimated by OLS and by FE-OLS (OLS augmented with a set of firm fixed effects). In Table 1 we

present estimates of the empirical production function, averaged over the 1,000 replications, under

alternative price data availability scenarios.

Table 1: The impact of base year price normalization with observed pro-
ductivity

Price levels Price changes
Low elasticity High elasticity

Q I II III IV

αM 0.4000 0.7023 0.4000 0.5036 0.4000
(0.0007) (0.0451) (0.0009) (0.0224) (0.0007)

αL 0.4000 0.2305 0.4000 0.3021 0.4000
(0.0006) (0.0433) (0.0008) (0.0213) (0.0007)

αK 0.2000 0.0705 0.2000 0.1194 0.2001
(0.0014) (0.0541) (0.0014) (0.0344) (0.0015)

Normalization Yes No Yes No
OLS OLS FE-OLS OLS FE-OLS

a Data consist of 500 firms with 15 periods each. Entries are averages over 1000 repetitions of
the estimated parameters in each simulation with standard errors in parentheses.
b Normalization: “Yes” means that pjb = pMjb = 0 and “No” means that the base price years
are treated as firm-specific fixed effects.
c Low elasticity -1.05; High elasticity -4.0.
d “OLS” means estimation is using OLS and “FE-OLS” means it is using OLS with a set of
firm-specific fixed effects.

The benchmark estimates are presented in the column labeled Q. In this case, prices are observed

so that physical quantities are used in estimation, as in equation (7). These estimates are the basis for

assessing the effect of the lack of full information on prices – when only price changes are observed –

on the estimates in columns I to IV.

In Columns I and III the unobserved base year price levels are normalized to zero and the param-

eters are estimated by OLS. In columns II and IV the unobserved base year price levels are treated as

firm-specific fixed effects and we use FE-OLS. We show results for a low and a high price elasticity
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of demand.

As expected, when productivity is observed OLS estimates of the quantity production function, in

column Q, are equal to the true parameters (0.4 for materials and labor elasticities and 0.2 for capital

elasticity). However, when base year price levels are ignored (columns I and III), the estimates are

far off the true values. For example, materials elasticity increases to 0.7 or 0.5, depending on the

elasticity of demand, while capital elasticity estimates decrease to 0.07 or 0.12.

This bias is a consequence of the measurement error introduced by the unobserved base year

price level, pjb − αM pMjb. When these prices are ignored – normalized to zero – a bias arises because

input demands are correlated with the omitted base year prices. This correlation arises because,

first, pMjb is necessarily correlated with partially deflated materials since m∗
jt = mjt + pMjb. And,

second, because input demands at time t depend on input prices at time t and, since these are serially

correlated, labor and materials will also be correlated with pMjb.15

The magnitude of the bias depends on how much prices vary across firms and this variation is

affected by the curvature of the demand function. Because of the presence of idiosyncratic shocks

each firm is on a different supply curve which gives rise to different output prices. The variation

across firms in (output) prices is inversely related to the elasticity of demand. The lower the demand

elasticity, the larger the variation in output price across firms and this increases the magnitude of the

omitted variable bias, as observed from the comparison between columns I and III.

Finally, treating the unobserved base year prices as firm-specific fixed effects correlated with input

demands eliminates the omitted variable bias, as shown in columns II and IV.

The main point emerging from Table 1 is that, despite productivity being observed, OLS estimates

are biased when the base year price levels are normalized to zero, as in columns I and III. The bias

disappears when the base year prices are accounted for by firm specific fixed-effects in columns II

and IV. These results deliver the main message of the paper: ignoring the unobserved base year prices

15Another channel for the endogeneity of the regressors is through the correlation between pjb and input demands.
Because output price depends on productivity and the latter is serially correlated, pjb is correlated with time t produc-
tivity ω jt. And, because input demands at time t depend on time t productivity, a correlation emerges between pjb and
input demands in other years. In this Section, however, this channel is closed because we control for productivity in the
regression.
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biases the estimation of the production function parameters.

3.3.2 Unobserved productivity

In this Section we return to the relevant empirical case where the researcher does not observe the

firm’s productivity. As mentioned above, we use the proxy method developed by Olley and Pakes

(1996; OP hereafter) to estimate the production function parameters when the unobserved base year

prices are normalized to zero.

The OP proxy method proceeds in two stages. In the first stage the static input parameters are

identified under the assumption that productivity is the only unobservable and that it can be in-

verted into an observable decision variable, i.e., investment. In the second stage, the dynamic input

parameters are recovered.

We present the simulation results for each stage separately. We do this for several reasons. First,

there is an increasing interest in analyzing firm-level markups and first stage static inputs parameters

are necessary for their estimation (e.g., Rubens, 2023; Raval, 2023; De Ridder et al., 2022; De Loecker,

2016, 2020). Second, the measurement error introduced by the unobserved base year prices affects

the estimated parameters only via the first stage of the estimation procedure. Third, this implies that

we can proceed in the second stage as in the usual proxy estimation methods.

Previewing our findings, the Monte Carlo results suggest that the estimated static and dynamic

input elasticities are significantly biased when the unobserved base year price levels are normalized

to zero. The bias, however, disappears when the measurement error arising from the unobserved

base year prices is captured by firm-specific fixed effects in the first stage of OP. These results exhibit

the same pattern as those in the previous Section where productivity was observed.

OP first stage: static input parameters

The OP approach relies on the notion that the investment policy rule can be inverted to proxy for

unobserved productivity in the production function equation, ω jt = h(k jt, ijt), where ijt represents

the firm’s investment. Hence, substituting for productivity in (8) the empirical production function
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becomes

r∗jt = αMm∗
jt + αLljt + ϕ(k jt, ijt) + pjb − αM pMjb + ϵjt (9)

where ϕ(k jt, ijt) = αKk jt + h(k jt, ijt). In empirical applications ϕ(k jt, ijt) is usually approximated by a

polynomial expansion.

When the base year are normalized to zero, so that pjb − αM pMjb = 0, the first stage corresponds

to the standard OP procedure. When the base year prices are treated as firm-specific fixed effects we

employ the Baltagi and Li (2002; BL hereafter) estimator. The BL estimation procedure was developed

for semiparametric partial linear models with fixed effects. It involves differencing and using a series

approximation to the nonparametric component of the partial linear model.16

Table 2 presents the averages of the estimated static input elasticities obtained in the first stage for

different panel lengths. The table has the same format as that of Table 1. Column Q, the benchmark

case, reports the Olley-Pakes (OP) estimates using physical quantities.

As in Table 1, when normalizing the base year prices to zero, in columns I and III, the estimates

are far off the true values. The estimator of the materials elasticity is biased upwards while that

of labor elasticity is biased downwards. Also as in Table 1, the biases diminish as the elasticity of

demand increases.

16Using obvious notation, let the production function be qit = x′jtβ + ϕ(zjt) + τ j + η jt for j = 1, ..., N and t = 1, ...T.
This is a semiparametric partial linear model with fixed effects. Differencing with respect to t = t0 implies ∆qit = ∆x′jtβ +

∆ϕ(zjt) + ∆η jt with ∆djt = djt − djt1 . Baltagi and Li (2002) propose to approximate ϕ(zjt) = pK(zjt)
′θ where pK(zjt) are the

first K terms
(

p1(zjt), ..., pK(zjt)
)′

of a sequence of functions and θ is a conformable vector of parameters
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Table 2: The impact of base year price normalization with
unobserved productivity
First stage static input parameters

Price levels Price changes
Low elasticity High elasticity

Q I II III IV

T = 7
αM 0.4000 0.7308 0.4000 0.5329 0.4000

(0.0009) (0.0478) (0.0023) (0.0247) (0.0019)

αL 0.4000 0.1601 0.4000 0.2726 0.4000
(0.0009) (0.0414) (0.0023) (0.0215) (0.0019)

T = 15
αM 0.4000 0.6853 0.4000 0.4954 0.4000

(0.0007) (0.0428) (0.0016) (0.0219) (0.0014)

αL 0.4000 0.2336 0.4000 0.3081 0.4000
(0.0006) (0.0410) (0.0015) (0.0209) (0.0013)

T = 30
αM 0.4000 0.6579 0.4000 0.4769 0.4000

(0.0005) (0.0400) (0.0011) (0.0210) (0.0009)

αL 0.4000 0.2838 0.4000 0.3285 0.4000
(0.0005) (0.0350) (0.0011) (0.0201) (0.0009)

Normalization Yes No Yes No
OP BL OP BL

See notes to Table 1.
“OP” means estimation follows Olley-Pakes (1996) and “BL” means it follows Baltagi

and Li (2002) as explained in the text.

In addition, Table 2 suggests that the bias decreases with the length T of the panel. For example,

the bias of the estimator of αM decreases from 0.33 (0.73 − 0.40) to 0.26 (0.66 − 0.40) as T increases

from 7 to 30 periods. The bias, however, does not disappears for empirically relevant values of T.17

This result is consistent with the following “intuitive” explanation. When the length of the panel is

17Although T = 30 is unusual in firm-level panel datasets, we use it because the length of firm-level panel datasets is
increasing over time. For example, the Spanish EESE dataset now covers firms for more than 20 years, and the Bank of
Italy’s INVIND dataset covers firms for nearly 40 years.
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short, base year b is not that “far away” from other years in the sample and the serial correlation

among the observations is (relatively) strong. Conversely, in longer panels the serial correlation

among the observations is weaker because observations are farther apart in time. Because the serial

correlation in prices links the prices in the base year to the input demands in other years, we should

expect the magnitude of the bias to decrease with the length T of the panel.

Finally, columns II and IV show that the omitted price bias disappears when the unobserved

base year prices are treated as firm-specific fixed effects and the parameters are estimated by BL.

Note also that the variation across simulated samples is an order of magnitude smaller for the BL

estimator meaning that it delivers the correct parameters not only on average, but in many samples.

In sum, the message from Table 2 is in line with that of the thought experiment in Table 1: nor-

malizing the base year prices to zero may significantly bias the estimators of the production function

parameters. Moreover, this bias does not vanish for reasonable panel length sizes. From the per-

spective of the markup debate, these results are worrisome because they suggest that the estimated

markups may be biased because of the normalization of base year prices. The bias is eliminated,

however, when the unobserved base year prices are treated as firm-specific fixed effects.

OP second stage: dynamic input parameter

Once the static input parameters and the unanticipated output shock, ϵjt, are identified in the first

stage, the capital coefficient αK is recovered through orthogonality conditions based on timing as-

sumptions. Specifically, it is assumed that capital at time t is decided at time t − 1 and is therefore

orthogonal to the productivity shock at t, i.e., E
[
ϵω

jt k jt

]
= 0, where ω jt = g(ω jt−1) + ϵω

jt , with g(·)

unknown. Here we follow the approach of Ackerberg et al. (2015) and De Loecker (2011) to estimate

the dynamic input’s parameter. This approach is based on recovering ϵω
jt from ϵω

jt = ω jt − g(ω jt−1) =

ω jt − g(ϕ(ijt−1, k jt−1)− αKk jt), where ϕ(ijt, k jt) is estimated in the first stage (see (9)) and the unknown

function g(·) is approximated by a polynomial expansion.18

18An advantage of the Baltagi and Li (2002) estimator is that it is easy to recover the function ϕ(·) from the first stage
and then proceed to estimate the capital elasticity parameter as usually done in any proxy estimation method, e.g., OP.
However, as BL suggest, the rate of convergence of the sieve estimator is slower than the parametric rate.
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Table 3 presents the average, over the 1,000 replications, of the estimated capital elasticities ob-

tained in the second stage. The table’s format is the same as that in Tables 1 and 2.

Table 3: The impact of base year price normalization with unobserved
productivity

Second stage dynamic input parameter

Price levels observed Price changes observed
Low elasticity High elasticity

Q I II III IV

T = 7

αK 0.1996 -1.004 0.2155 -0.3061 0.2157
(0.2738) (0.9959) (0.4774) (0.3890) (0.4741)

T = 15

αK 0.2018 -0.0853 0.2047 0.0380 0.2048
(0.1044) (0.1501) (0.2096) (0.1221) (0.2097)

T =30

αK 0.2028 0.1539 0.2078 0.1740 0.2079
(0.0358) (0.0380) (0.0952) (0.0361) (0.0951)

Price Normalization Yes No Yes No
OP OP BL OP BL

See notes to Table 2.

In line with our previous results, the estimates in Table 3, columns I and III, show that the dynamic

input estimates are biased when the base year price level is normalized to zero. The bias can be

considerable as shown in column I of the top panel. Thus, despite the second stage not being directly

affected by the measurement error, the bias in the first stage carries over to the second stage. Note

also that the bias decreases with T but it does not vanish for empirically relevant values of T.

The bias essentially disappears when introducing a fixed effect in the first stage to account for the

unobserved base year prices, as in columns II and IV.
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The variability across replications in the estimates of αK is an order of magnitude larger that of

the estimates of the static input parameters (in Table 2). This is a reflection of the inherent lower over-

time variability in the capital variable, which is typical of the data used in empirical work. Because of

this variability we also looked at the median of the estimates of αK (not shown). In columns II and IV,

the median values of the estimates of αK are closer to the true values than the mean value meaning

that there is a similar number of estimates falling above and below the true value.

In sum, the goal of the Monte Carlo simulations was to quantify the bias introduced when base

year prices are normalized to zero. Using parameters taken from the literature, and summarized in

Appendix Table B1, the results point to significant biases in the estimation of the production function

parameters. In Appendix C we find this conclusion to be robust to changes in some of the parameters

generating the simulated data.

There is an additional problem when the base year price level is normalized to zero: the produc-

tion function parameter estimates may not invariant to the choice of base year. This is the topic of

next Section.

4 Estimates are sensitive to the choice of base year

The choice of base year should not affect the estimated parameters of the production function when

quantities are used because equation (7)) does not depend on prices. Similarly, if prices are observed

and nominal variables are fully deflated, the choice of base year should also have no effect on the

estimates.19

The question we want to answer in this Section is whether the production function parameter

estimates are sensitive to the choice of base year when the unobserved base year price levels are

normalized to zero, i.e., when partially deflated variables are used. This is an important question

because the base year used in the recursion formula (4) is chosen by the researcher and can be any

19Output price, for example, can be written as pjt = pjb + (pjt − pjb) = pjb′ + (pjt − pjb′ ) where b and b′ are two different
base years. Changing the base year does not affect the price and, therefore, should not affect the estimates. The same holds
for the materials price.
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year in the sample.

At first glance, the empirical production function depends on the choice of base year through

the unobserved base year price levels (see equation (8)). Choosing different base years implies nor-

malizing the price level to zero at different points in time, i.e., at year b or at year b′. Thus, the same

nominal variables (revenues and expenditures) are deflated differently reflecting the price change be-

tween year t and the base years b or b′.20 This implies that a change in the base year actually changes

the variables used in the regression and will, therefore, affect the parameter estimates.

This sensitivity to the choice of base year does not occur when incorporating firm-specific fixed

effects into the estimation because first-differenced variables do not depend on the base year.21

We use the previous Monte Carlo simulation design to illustrate this point. We estimate the

production function under two base years and construct the ratio of the estimates. If the choice of

base year does not matter then this ratio should be unity.

We focus on the empirically relevant case of unobserved productivity. The results in Table 2 were

based on choosing the first year of the sample as base year, b = 1. We now re-estimate the elasticities,

using the same simulated data underlying the results in Table 2, but with a base year in the middle

of the sample, b′ = 7 (the length of the panel is 15 periods). Table 4 presents the average ratios over

the 1,000 data replications.

20In the case of output, for example, when the base year is b, we set pjb = 0, and the output price used to construct
partially deflated revenues is (pjt − pjb), for t > b, the price change between t and b. Similarly, when the base year is b′

and we set pjb′ = 0, the price deflator is (pjt − pjb′ ), for t > b′. But note that, when prices differ across the base years,
(pjt − pjb) ̸= (pjt − pjb′ ), for t > max(b′, b)

21When estimating model (9) accounting for the fixed effects we are estimating the model with first-differenced variables.
We now show that although r∗jt and m∗

jt depend on the choice of base year, their first-differences do not. We have r∗jt =

rjt − ∑t
s=b+1 ∆pjs = qjt + pjb making it clear that, in general, partially deflated revenues depend on the choice of base year.

Taking first-differences we get r∗jt − r∗jt−1 = rjt − rjt−1 − ∆pjt = qjt − qjt−1 which does not depend on the choice of base
year because physical output does not depend on it. Similarly for m∗

jt.
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Table 4: Ratio of estimates in two different base years.

Price levels Price changes
Low elasticity High elasticity

Q I II III IV

αM 1.00 1.075 1.00 1.069 1.00
(0.00) (0.090) (0.00) 0.063) (0.00)

αL 1.00 0.778 1.00 0.906 1.00
(0.00) (0.219) (0.00) (0.092) (0.00)

αK 1.00 0.5335 1.00 0.7770 1.00
(0.00) (0.8633) (0.00) (0.9277) (0.00)

Normalization Yes No Yes No
OP OP BL OP BL

See notes to Table 2. T=15.
The entries are the average of the ratio of the estimates obtained when changing the

base year from the first to the seventh year in the sample period.

A value different from 1 means that the estimates change when the base year is changed. Clearly, in

columns I and III, where the base year price levels are normalized to zero, estimates are not invariant

to the choice of base year. The differences can be significant. For example, the capital coefficient

declines, on average, by 47 percent when the base year is changed (column I). Intuitively, because of

its bias, the OP estimator converges to a probability limit that depends on the covariances between

the inputs in years t and the prices in the base year b. If these covariances change with the choice of

base year, the probability limit will also change and the estimates will differ (see Appendix A for the

analysis of a simple case).

On the other hand, in Columns II and IV, where the base year prices are accounted for by firm-

specific fixed effects, the estimates do not change when the base year changes. This reflects the

previous observation that first-differenced variables do not depend on the choice of base year.

We remark that the choice of base year does not affect the estimates when the estimator is consis-

tent. On the other hand, finding that the estimates do not change when the base year changes does
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not necessarily imply that the estimator is consistent. It simply means that the magnitude of the bias

does not change with the base year (see Appendix A for the analysis of a simple case).

We also remark that studying whether this ratio is equal to or different from 1 is not meant as a

statistical test of a null hypothesis of ”no effect” of the choice of base year. By definition, changing the

base year should not affect the estimates when using physical quantities or fully deflated revenues

and expenditures. Any deviation between the estimates implies that the estimation of the production

parameters based on partially deflated nominal variables suffers from an omitted price bias.

In the next Section we present additional evidence, based on real data, on the sensitivity of the es-

timated coefficients to the choice of base year when normalization of the base year prices is imposed.

4.1 Changing the base year: ESEE firm-level data

We now illustrate the lack of invariance of the estimated production function parameters to the choice

of base year using real data. We use data from the Spanish firm-level database Encuesta Sobre Estrate-

gias Empresariales (ESEE) which has been widely used to estimate production functions and related

issues. Specifically, we use the synthetic dataset generated by Koch et al. (2021), based on the ESEE,

that makes replicating our results possible.22

The ESEE is a firm-level dataset that reports data on annual price changes. These price change

data are used to recover the unobserved firm’s price level by normalizing the log base year price

level to zero (see, e.g.,Koch et al., 2021; Jaumandreu and Lin, 2018). We follow Koch et al. (2021) and

use their data and script to estimate the labor coefficient of a Cobb-Douglas value-added production

function under three choices of base year.23

22Most firm-level datasets, including the ESEE, are proprietary data but Koch et al. (2021) con-
structed a synthetic dataset based on the ESEE that allows for replication of results and is available at
https://academic.oup.com/ej/article/131/638/2553/6124631supplementary-data.

23Their empirical production function is yjt = αLljt + αKkjt + ω jt + pjb − pMjb + ϵjt where yjt is value added measured
by y∗ = r∗ − m∗, the difference between partially deflated revenues and materials. We focus on the labor coefficient only
in order not to clutter the table.
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Table 5: EESE: ratio of estimates of αL when changing the base year

ACF OP BL

Base year 1995 2000 2015 1995 2000 2015 1995 2000 2015

Sector

1 1.054 1.180 0.695 1.104 1.033 0.947 1.00 1.00 1.00

2 0.534 0.817 0.823 0.260 0.370 0.535 1.00 1.00 1.00

3 1.974 1.121 1.147 1.066 1.052 1.043 1.00 1.00 1.00

4 1.551 1.312 0.406 1.142 1.116 1.064 1.00 1.00 1.00

6 1.037 1.032 0.075 1.142 1.072 0.943 1.00 1.00 1.00

7 1.276 1.058 1.196 0.728 0.944 0.623 1.00 1.00 1.00

8 1.038 1.031 0.961 1.671 1.222 1.897 1.00 1.00 1.00

9 0.662 0.833 1.239 1.067 1.062 0.755 1.00 1.00 1.00

10 1.031 0.958 0.916 0.668 0.884 1.108 1.00 1.00 1.00

The table presents the average ratio of the labor coefficient estimate, over the 1,000 replications, when
the base year is 2006 to that estimate when the base year is 1995, 2000 and 2015.
The dataset and scripts are those from Koch et al. (2021).
“ACF” means estimation is using Ackerberg et al. (2015), “OP” means it is using Olley-Pakes (1996)

and “BL” means it is using Baltagi and Li (2002) as explained in the text.

Table 5 presents the average ratio of the labor coefficient estimate when the base year is 2006

—the base year used by Koch et al . (2021) —to that estimate when the base year is 1995 (column I),

2000 (column II) and 2015 (column III). In the first (left) panel the estimates are obtained following

the Ackerberg et al. (2015) approach to estimate production functions, which is the one followed by

Koch et al. (2021). In the second (central) panel we apply Olley and pakes (1996) and in the third

(right) panel we apply Baltagi and Li (2002). Recall that when the ratio differs from 1 it is indicative

that the estimates change when the base year changes.

The results very clearly indicate that ignoring the unobserved base year prices makes the esti-

mates sensitive to the choice of base year. The estimated labor coefficients, based on exactly the same

data, can differ by more than 50 percent when the base year is changed. This is worrisome since the

choice of base year is usually viewed as an innocuous choice.
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The results in this section are relevant to the “markup debate”: we can change a markup estimate

by simply choosing a different base year in the computation of price levels when we normalize the

base year prices in the empirical production function.

5 Unobserved base year prices and productivity

In this Section we show that the usual approach to recover productivity as a residual includes the

measurement error introduced by the unobserved base year prices (De Loecker, 2011).

Firm-level productivity is often measured by the residual obtained after estimation of the pro-

duction function in equation (8),

ω̂ jt = r∗jt −
(

α̂Lljt + α̂Mm∗
jt + α̂Kk jt + ϵ̂jt

)
= qjt −

(
α̂Lljt + α̂Mmjt + α̂Kk jt + ϵ̂jt

)
+ pjb − α̂M pMjb

= ω jt + (αL − α̂L)ljt + (αM − α̂M)mjt + (αK − α̂K)k jt + (ϵjt − ϵ̂jt) + pjb − α̂M pMjb

(10)

where ϵ̂jt is estimated in a first stage (e.g., as in Ackerberg et al., 2015).

When using a consistent estimator of the production function parameters (e.g., the BL estima-

tor used in this paper), so that estimation errors vanish in large samples, we obtain that residual

productivity is

ω̂ jt ≈ ω jt + pjb − αM pMjb. (11)

In what follows we focus on this case and base our analysis on this approximation. The expression

above shows that residual productivity includes a price effect reflected by the unobserved base year

prices. Differences in ω̂ jt across firms may reflect differences in demand conditions rather than in

productivity (e.g., Foster et al., 2008). In addition, the variance of estimated productivity includes

the variance of the unobserved base year prices. This much is a well-known feature of estimating

production functions when quantities are not observed.
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What is less known is that residual productivity depends on the choice of base year, as long as

nominal prices vary over time,

ω̂b
jt − ω̂b′

jt ≈
(

pjb − pjb′
)
− αM

(
pMjb − pMjb′

)
̸= 0

where the superscripts in the estimated productivity indicate the base year chosen to construct the

firm-level prices used in the deflation of nominal quantities. This implies that a simple change in the

base year may lead to different conclusions regarding productivity features.

It is clear that because pjb − αM pMjb is constant over time, productivity growth at the firm level

can be consistently estimated by ω̂ jt − ω̂ jt−1. Despite this, aggregate productivity growth might be

biased. Estimated aggregate productivity growth Φ̂jt can be written as

Φ̂jt − Φ̂jt−1 = ∑
j

sjtω̂ jt − ∑
j

sjt−1ω̂ jt−1 (12)

≈ ∑
j

sjtω jt − ∑
j

sjt−1ω jt−1 + ∑
j
(sjt − sjt−1)(pjb − αM pMjb)

using (11) and where sjt = Rjt/ ∑j Rjt is firm j′s share of revenue in year t.

The last term in equation (12) introduces a bias in estimated aggregate productivity. It reflects the

covariance between changes in market shares and prices in the base year. If more productive firms

have lower prices and increasing market shares we would expect this term to be negative so that

Φ̂jt − Φ̂jt−1 would be underestimating aggregate productivity growth. Note also that the magnitude

of the bias depends on the units in which prices are measured so that its value can be increased or

decreased arbitrarily.

In sum, using residual based productivity estimates gives biased firm-specific productivity levels

which also depend on the choice of base year, even if the production function is estimated consis-

tently. Although we can recover firm-specific productivity growth, aggregate productivity growth is

still biased and this bias is likely to be negative.

Instead of using residual productivity estimates we can estimate firm-specific productivity levels

directly from the second stage, as suggested by De Loecker (2011), which is free of unobserved base
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year prices. To compare these two estimates we use the same simulation design underlying the

results in Table 2 to compute a “residual productivity” given by ω̂ jt = ω jt + pjb − αM pMjb , and a

“second stage productivity” given by ω̂ jt = ϕ̂(ijt, k jt)− αKk jt, where ϕ̂(ijt, k jt) is estimated from the

BL first stage. Note that these measures are not truly productivity estimates since we are using the

unobserved base prices and the true capital elasticity in the computation of these measures. Doing

this avoids estimation errors and allows for a cleaner comparison between the two approaches.

Table 6 compares the two productivity measures to the true productivity. The standard deviation

of true productivity is 0.26 which, as expected, is overestimated when using residual productivity

(0.35). On the other hand, second stage productivity stage delivers the correct dispersion. The col-

umn labeled βOLS shows the OLS coefficient estimate from a regression of ω jt on ω̂ jt. We clearly

see that we can recover the true productivity when using the second stage productivity but not the

residual one.

Table 6: Productivity and unobserved base year price level.

Low elasticity High elasticity

Productivity std. dev. productivity βOLS std. dev. productivity βOLS

True ω jt 0.2599 0.2599
(0.0027) (0.0027)

Residual ω̂ jt = ω jt + pjb − αM pMjb 0.3535 0.4485 0.2891 0.7245
(0.0074) (0.0183) (0.0045) (0.0152)

Second Stage ω̂ jt = ϕ̂(ijt, k jt)− αKk jt 0.2605 0.9960 0.2608 0.9960
(0.0029) (0.0058) 0.0029) (0.0060)

a Data consist of 500 firms with 15 periods each. Entries are averages over 1000 repetitions of the estimated parameters in each
simulation with standard errors in parentheses.
b Low elasticity -1.05; High elasticity -4.0.
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6 Conclusion

The estimation of production functions with firm-level data is hampered by the non-observability

of physical quantities (output and inputs). Recent studies that use revenues and input expenditures

deflated by industry-level prices introduce structural assumptions to cope with the omitted variable

bias identified by Klette and Griliches (1996).

As data on firm-level price changes become increasingly available, researchers use them to con-

struct firm-specific prices which are then used to deflate nominal revenues and/or input expendi-

tures. The goal of this paper is to show that this procedure introduces a measurement error reflecting

the base year prices used in the construction of the firm-specific prices.

This measurement error generates an omitted variable bias similar in spirit to that of Klette and

Griliches (1996). Using Monte Carlo simulations we find that ignoring this measurement error – by

its normalization to zero – biases the estimated parameters of the production function.

Another consequence of the normalization of the base year prices is that the estimates of the

production function are not invariant to the choice of base year, under the usual assumptions. This

implies, for example, that markup estimates based on estimated elasticities of the static inputs may

also depend on the choice of base year. Moreover, as shown in the paper, residual productivity esti-

mates also vary with the choice of base year, even in cases when the production function parameters

are estimated consistently.

Finally, we also show that the bias introduced by the measurement error may be addressed by

treating the base year prices as firm-specific fixed effects in the estimation of the production function.

The unobserved output price always enters additively into the empirical production function and

is therefore amenable to “fixed effect estimation”. The way the unobserved input price enters the

regression model depends on the functional form of the production function. In our Cobb Douglas

example, it also enters additively and can be easily captured by firm-specific fixed effects. In non-

linear production models, this may require more complex estimation procedures.
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Appendix A The bias in the OLS estimator

In this Appendix we use the simple regression model to examine the conditions under which the

zero normalization of base year prices results in (a) biased estimators, and in (b) estimators sensitive

to the choice of base year.

We assume a single input, materials, and a linear production function, qjt = α0 + αMmjt + ϵjt. To

focus exclusively on the impact of normalizing the base year prices we assume that productivity is

observed and that qjt measures output net of productivity. As explained in the text, when only price

changes are observed we use partially deflated revenues and materials to estimate αM. Equation (6)

in the text becomes

r∗jt = αMm∗
jt − αM pjb + pjb + ϵjt

= αMm∗
jt + vjb + ϵjt

(A.1)

where vjb = pjb − αM pMjb, r∗jt ≡ rjt − ∑t
s=b+1 ∆pjs and m∗

jt = ejt − ∑t
s=b+1 ∆pMjs = mjt + pMjb as

defined in the text.

The standard approach in the literature has been to ignore the unobserved base year prices by

normalizing them to zero. To understand under which conditions this normalization leads to biased

estimators we derive the probability limit (plim) of the OLS estimator of αM in (A.1).

We assume that we have a panel of N firms over T periods. The firms are identically and inde-

pendently distributed. Materials demand and prices within a firm can be serially correlated but they

are independent across firms. In this single-regressor model we can use the well known OLS formula

to obtain,

plim(α̂M) = αM − αM
∑T

t=1 Cov(m∗
jt, vjb)

∑T
t=1 Var(m∗

jt) + ∑T
t=1 E(m∗

jt)
[

E(m∗
jt)−

1
T ∑T

t=1 E(m∗
jt)
] (A.2)

as N → ∞.24

24This result relies on the assumption that partially deflated materials are uncorrelated with the structural error ϵjt in all
periods (strict exogeneity).
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The first and second moments in (A.2) may vary over time t but are the same across firms because

of the i.i.d sampling assumption (the j subscript can be ignored). To be clear, the moments in (A.2)

refer to the moments in the common population of firms at time t, i.e., Var(m∗
jt) is the population

variance across firms at time t.

For the OLS estimator to be consistent we need Cov(m∗
jt, vjb) = 0 for all t. By definition of the

partially deflated materials, however, it will almost always be the case that these covariances are

nonzero because m∗
jt = mjt + pMjb. This holds irrespective of the serial correlation in prices and their

effect on materials demand. The exception is when there is no variation in prices across firms so that

vjb is a constant. Furthermore, in most economic environments theory tells us that materials demand

is a function of materials and output prices and this may additionally imply a nonzero Cov(m∗
jt, vjb)

term.

To make further progress we impose some structure on the input demands. We assume that firms

follow a model of monopolistic competition with inverse demand,25.

Pjt = Q
1
µ

jt , µ < −1

Firms maximize static profits by choosing output price and the amount of materials, given ma-

terials prices. In this model (log) materials demand and log output price are linear functions of the

exogenous log materials price pMjt denoted by

mjt = γ0 + γ1 pMjt

pjt = δ0 + δ1 pMjt

(A.3)

where the parameters are functions of µ and αM.26

This implies that vjb = pjb − αM pjb = δ0 + λpMjb, with λ = δ1 − αM. Recall that m∗
jt = mjt + pMjb.

We then have

25This model is a simplified version of the model used to generate data for our Monte Carlo simulations (see Section 3
and Appendix B for details)

26For example, γ1 = − µ
µ−αM(1+µ)

< 0 and δ1 = αM
µ γ1 > 0.
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Cov(m∗
jt, vjb) = Cov(mjt + pMjb, λpMjb)

= λγ1Cov(pMjt, pMjb) + λVar(pMjb)

Plugging back these expressions into (A.2) we get that for any choice of base year b,

plim(α̂M) = αM − αM
TλVar(pMjb) + ∑T

t=1 λγ1Cov(pMjt, pMjb)

∑T
t=1 Var(m∗

jt) + ∑T
t=1 E(m∗

jt)
[

E(m∗
jt)−

1
T ∑T

t=1 E(m∗
jt)
] (A.4)

We can use formula (A.4) to derive conditions under which ignoring the unobserved base year

prices leads to consistent OLS estimators. The key moments are the variance of prices across firms in

the base year b and the covariances between period t and period b prices (also across firms).

In general, the OLS estimator is not consistent because materials prices usually vary across firms

(in the base year), Var(pMjb) ̸= 0, and they are usually serially correlated over time, Cov(pMjt, pMjb) ̸=

0 for some t. This implies plim(α̂M) ̸= αM.

There are however, special cases when OLS delivers a consistent estimator. This occurs when

Var(pMjb) = 0, i.e., prices are the same across firms in the base year (although prices may differ in

other years). In this case, pMjb = pMb is the same for every firm and the term is absorbed into the

overall regression constant; there is no omitted variable. The covariance terms in (A.4) also vanish

because prices in period b do not vary across firms.

Suppose materials prices are serially uncorrelated but that prices differ in the base year. In this

case, there is no transmission of the base year prices to period t materials demand but the bias in OLS

does not disappear.The reason is that, by construction, partially deflated materials, m∗
jt = mjt + pMjb

depend on the base year price which is part of the error. That is, even if prices vary randomly over

time, OLS is still biased as long as there is variation across firms in the price of materials.

Sensitivity to the choice of base year

Another topic of interest, developed in Section 4 of the paper, is the non-invariance of the estimator

to the choice of base year. The numerator of the probability limit in (A.4) helps us to understands
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when this happens. In general, if the estimator is consistent then it cannot change with the base year.

So we focus on situations when it is not consistent.

The point is that the variance and covariances in (A.4) can vary with the choice of base year b.

Intuitively, the magnitude of the OLS bias depends on the covariances between year t and year b

prices, and on the variance Var(pMjb). If changing the base year changes these moments , the plim

of the OLS estimator will change. It is only in the rare case where Var(pMjb) and Cov(pMjt, pMjb) are

the same for all b, that the estimator will be invariant to the choice of base year.

Appendix B The data generating process (DGP)

In this Appendix we describe the data-generating process used to simulate data our Monte Carlo

experiments. For the most part, we follow Appendix A.2 in Grieco et al. (2016; GLZ, hereafter). We

simulate a dataset for 500 firms observed during 15 periods. We generate 1,000 replications of this

dataset.

We first describe the generation of the exogenous variables: productivity, input prices and capital.

Given these variables, we then derive the optimal choice of static inputs (labor and materials) as well

as output quantity and price.

The evolution of productivity for each firm j is a first-order Markov process:

ω jt = λ0 + λ1ω jt−1 + ϵω
jt

and the idiosyncratic labor and material (log) input prices are generated by

pLjt = λL0 + λL1 pLjt−1 + ϵL
jt+1

pMjt = λM0 + λM1 pMjt−1 + ϵM
jt+1

where
(

ϵL
jt, ϵM

jt , ϵω
jt

)′
∼ N(0, Σ), where Σ is a 3 × 3 positive matrix. When Σ = diag

(
σ2

L, σ2
M, σ2

ω

)′
input prices are said to be exogenous. When input prices shocks are correlated with the productivity
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shock we say that input prices are endogenous.27

The investment rule and capital evolution process are set as

log(Ijt) = ξω jt + (1 − ξ)log(Kjt)

Kjt+1 = Kjt + Ijt

where 0 < ξ < 1. The investment rule satisfies Olley and Pakes (1996) conditions.

Using these equations, and choosing parameters and initial values, we simulate data for
{

ω jt, Kjt, PLjt , PMjt

}
for each firm j = 1, ..., 500 and period t.

The GZL model assumes firms are monopolistically competitive and face the inverse demand

function

Pjt = Pt

(
Qjt

Qt

) 1
µ

where Qt and Pt are industry-level output quantity and price in period t and µ < −1. As in GLZ we

normalize the industry-level output quantity and price to unity.

At the beginning of each period t the firm observes Kjt, productivity ω jt and firm-specific input

prices. It then optimally chooses labor and materials to maximize static profits in each period,

Max
Ljt,Mjt

PjtQjt − PLjt Ljt − PMjt Mjt

Departing from GLZ we assume a Cobb-Douglas production function

Qjt = eω jt KαK
jt MαM

jt LαL
jt .

27Several papers document strong persistence in output prices at the firm level (Roberts and Supina (2000), Foster et
al (2008)). Foster et al. (2008), for example, find that the implied annual autocorrelation in output prices, as well as in
productivity, is roughly 0.75 to 0.80.

36



Labor and materials satisfy the first order conditions given by

cQc
jtαL = PLjt Ljt

cQc
jtαM = PMjt Mjt

where c = µ+1
µ PtQ

− 1
µ

t = µ+1
µ under the assumption that Pt = Qt = 1.

Departing from GZL we assume that observed labor demand suffers from an optimization error.

Labor demand is then

Ljt =
αLPMjt

αMPLjt

Mjteνjt (B.1)

where νL ∼ N(0, σνL) is the firm’s labor demand optimization error.

Plugging (B.1) into the production function, and solving for materials gives

Mjt =

(
Qjte−ω jt K−αK

jt

(
αLPMjt

αMPLjt

eνjt

)−αL
) 1

αL+αM

(B.2)

Finally, output is derived from adding the two first order conditions

cQc
jt(αL + αM) =

(
αL

αM
eνjt + PMjt

)
Mjt

substituting for materials and solving for Qjt,

Q∗
jt =

 1
c(αL + αM)

(
αLPMjt

αM
eνjt + PMjt

)(
e−ω jt K−αK

jt

(
αLPMjt

αMPLjt

eνjt

)−αL
) 1

αL+αM


1

c− 1
αL+αM

(B.3)

We use (B.3) to compute Q∗
jt, we then get materials from (B.2) using Qjt = Q∗

jt and finally labor

from (B.1).
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Finally, as in GZL, observed output, prices and revenues are

Qjt = Q∗
jte

ϵjt

Pjt = Q
1
µ

jt

Rjt = PjtQjt

where ϵjt ∼ N(0, 0.01) is a mesurement error.

In this way, we generate the vector of data
(

ω jt, Kjt, PLjt , PMjt , Mjt, Ljt, Ijt, Qjt, Pjt, Rjt

)
for each firm

j and period t. For each firm j in each replication, we generate 50 observations and keep the last

T < 50 so that the length of the panel data is T (7,15,30). This minimizes the effect of the initial

conditions for the prices, productivity and capital processes. Finally, Table B1 presents the values of

the parameters used in the simulations.
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.
Table B1: Monte Carlo parameter values

Parameter Description Value Reference

µ Demand elasticity Low: -1.05 GLZa

High: -4.0

αM Materials elasticity 0.40 GLZ

αL Labor elasticity 0.40 GLZ

αK Capital elasticity 0.20 GLZ

ξ Parameter investment rule 0.20 GLZ

λb Autocorrelation parameter 0.80 FHSc

sd(ω) Standard of deviation productivity 0.26 FHS

sd(price) Standard deviation of input price levels 0.18 FHS

sd(K0) Standard deviation of initial capital stock 0.05 GLZ

sd(w0) Standard deviation of initial productivity 0.05 GLZ

sd(η) Standard deviation of production measurement error 0.01 GLZ

sd(νL) Standard deviation of labor measurement error 0.01 –

corr(pL, ω)d Correlation between shocks to price of labor and productivity -0.25 FHS

corr(pM, ω)d Correlation between shocks to price of materials and productivity -0.25 FHS

corr(pM, pL)
d Correlation between shocks to prices of labor and of materials 0.25

T Number of periods 15

J Number of firms 500

N Number of replications 1000

a Grieco et al. (2016).
b Autocorrelation coefficient for productivity, price of labor and price of materials. It is set to zero for labor and materials

when there is no price persistence.
c Foster et al. (2008).
d Set to half of that the FHS value. Correlations are set to zero when input prices are exogenous.
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Appendix C Additional simulation results

The simulation results presented in the previous section were based on data simulated assuming pa-

rameter values for drawn from the literature, as detailed in Table B1 of Appendix B. In this Appendix

we summarize the results from changing some of the underlying parameters generating the simu-

lated data. In Table C1 we present the OP and Baltagi-Li estimators, appearing in columns I-IV of

Table 2, when changing the parameters in the DGP one at the time. The results in these tables should

be compared to those in Table2.

The top panel of Table C1 shows results when there is no serial correlation in input prices. To

do this we assume that the autoregressive parameters in the law of motion for the input prices are

zero (λL1 = λM1 = 0). The bias in the OP estimator of αM and αK seems to be slightly smaller than

the bias when input prices are serially correlated (λL1 = λM1 = 0.8 in Table 2), while the bias in the

estimation of the labor elasticity is reduced significantly and it almost disappears. This suggests that

the stronger the persistence in input prices the larger the bias in the estimated coefficients, at least for

the labor coefficient. This makes intuitive sense because the correlation between input demands and

pjb − αM pMjb is larger the stronger the serial correlation in input prices.

In the second panel of Table C1 we increase the variance of the shock to productivity by 50 percent,

while in the third panel we decrease it by 50 percent (relative to the values in Table 2). This implies

that input and output prices are more and less dispersed across firms, respectively. The magnitude

of the OVB should therefore increase and decrease accordingly. This is exactly what occurs to the OP

estimator in the second and third panels of Table C1.
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Table C1: Other parameter configurations

Low elasticity High elasticity
I II III IV

No persistence of input prices (λL1 = λM1 = 0)

αM 0.6520 0.4001 0.4635 0.4000
(0.0522) (0.0014) (0.0264) (0.0011)

αL 0.3999 0.4000 0.3774 0.4000
(0.0286) (0.0014) (0.0226) (0.0011)

αK -0.0891 0.2084 0.0191 0.2085
(0.1648) (0.2435) (0.1311) (0.2431)

Larger variance of productivity shock (1.5 × σω
ϵ )

αM 0.7958 0.4000 0.5511 0.4000
(0.0636) (0.0015) (0.0337) (0.0013)

αL 0.2146 0.4000 0.2670 0.4000
(0.0593) (0.0015) (0.0319) (0.0011)

αK -0.4128 0.2055 -0.1575 0.2055
(0.2605) (0.2278) (0.2058) (0.2276)

Smaller variance of productivity shock (0.5 × σω
ϵ )

αM 0.5749 0.4000 0.4424 0.4000
(0.0250) (0.0016) (0.0131) (0.0013)

αL 0.2526 0.4000 0.3462 0.4000
(0.0236) (0.0015) (0.0125) (0.0013)

αK 0.1186 0.1916 0.1568 0.1960
(0.0774) (0.3656) (0.064) (0.3650)

Normalization Yes No Yes No
OP BL OP BL

See notes to Table 2. T = 15.
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